1. Given $f(x)=0.5 x_{1}^{2}+\sin x_{2}+e^{x_{3}}$ where $x \in \mathbb{R}^{3}$, which of the following is $\partial f / \partial x$? (hint: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, think about the dimensions)
(a) $\frac{\partial f}{\partial x}=\left[\begin{array}{c}x_{1} \\ \cos x_{2} \\ e^{x_{3}}\end{array}\right] \in \mathbb{R}^{3 \times 1}$
(b) $\frac{\partial f}{\partial x}=\left[\begin{array}{lll}x_{1} & \cos x_{2} & e^{x_{3}}\end{array}\right] \in \mathbb{R}^{1 \times 3}$
2. Given $f(x)=0.5 x_{1}^{2}+\sin x_{2}+e^{x_{3}}$ where $x \in \mathbb{R}^{3}$, which of the following is $\nabla_{x} f(x)$? (hint: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, think about the dimensions)
(a) $\nabla_{x} f(x)=\left[\begin{array}{c}x_{1} \\ \cos x_{2} \\ e^{x_{3}}\end{array}\right] \in \mathbb{R}^{3 \times 1}$
(b) $\nabla_{x} f(x)=\left[\begin{array}{lll}x_{1} & \cos x_{2} & e^{x_{3}}\end{array}\right] \in \mathbb{R}^{1 \times 3}$
3. Given $f(x)=0.5 x_{1}^{2}+\sin x_{2}+e^{x_{3}}$ where $x \in \mathbb{R}^{3}$, is $\frac{\partial}{\partial x}\left(\nabla_{x} f(x)\right)=\nabla_{x}^{2} f(x)$?
(a) yes
(b) no
4. Which one of the following pairs of vectors $x \in \mathbb{R}^{3}$ and $y \in \mathbb{R}^{3}$ do not exhibit complementarity?
(a) $x=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \quad y=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
(b) $x=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \quad y=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
(c) $x=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \quad y=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
5. If we have the following optimization problem:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x)=0 \tag{1}
\end{array}
$$

with a dual variable λ associated with the constraint $c(x)=0$ and a Lagrangian $\mathcal{L}(x, \lambda)=f(x)+\lambda^{T} c(x)$, we have the following KKT conditions:

$$
\begin{align*}
\nabla_{x} \mathcal{L}(x, \lambda)=\nabla_{x} f(x)+\left[\frac{\partial c}{\partial x}\right]^{T} \lambda & =0 \tag{2}\\
c(x) & =0 \tag{3}
\end{align*}
$$

Which one of the following linear systems computes the "full" Newton step, (the other being the GaussNewton step)?
(a) $\left[\begin{array}{cc}\nabla_{x}^{2} f(x) & {\left[\frac{\partial c}{\partial x}\right]^{T}} \\ \frac{\partial c}{\partial x} & 0\end{array}\right]\left[\begin{array}{c}\Delta x \\ \Delta \lambda\end{array}\right]=\left[\begin{array}{c}-\nabla_{x} \mathcal{L}(x, \lambda) \\ -c(x)\end{array}\right]$
(b) $\left[\begin{array}{cc}\nabla_{x}^{2} \mathcal{L}(x, \lambda) & {\left[\frac{\partial c}{\partial x}\right]^{T}} \\ \frac{\partial c}{\partial x} & 0\end{array}\right]\left[\begin{array}{c}\Delta x \\ \Delta \lambda\end{array}\right]=\left[\begin{array}{c}-\nabla_{x} \mathcal{L}(x, \lambda) \\ -c(x)\end{array}\right]$

