1. We have the following optimization problem:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \tag{1}
\end{array}
$$

with a dual variable λ associated with the inequality constraint $c(x) \leq 0$ and a Lagrangian $\mathcal{L}(x, \lambda)=$ $f(x)+\lambda^{T} c(x)$. Which of the following is not one of the KKT conditions?
(a) $\nabla_{x} f(x)+\left[\frac{\partial c}{\partial x}\right]^{T} \lambda=0$
(b) $c(x) \leq 0$
(c) $\lambda \geq 0$
(d) $c(x)^{T} \lambda>0$
(e) $\lambda \odot c(x)=0(\odot$ is element-wise multiplication)
2. If $a \odot b=0$, does $a^{T} b=0 ?(\odot$ is element-wise multiplication)
(a) yes
(b) no
3. If we have the following optimization problem:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x)=0 \tag{2}
\end{array}
$$

with the following KKT conditions:

$$
\begin{align*}
\nabla_{x} \mathcal{L}(x, \lambda)=\nabla_{x} f(x)+\left[\frac{\partial c}{\partial x}\right]^{T} \lambda & =0 \tag{3}\\
c(x) & =0 \tag{4}
\end{align*}
$$

which of the following is the correct way to regularize the Gauss-Newton step computation with a regularizer $\beta>0$? (The regularizer is shown in red.)
(a) $\left[\begin{array}{cc}\nabla_{x}^{2} f(x)+\beta I & {\left[\frac{\partial c}{\partial x}\right]^{T}} \\ \frac{\partial c}{\partial x} & +\beta I\end{array}\right]\left[\begin{array}{c}\Delta x \\ \Delta \lambda\end{array}\right]=\left[\begin{array}{c}-\nabla_{x} \mathcal{L}(x, \lambda) \\ -c(x)\end{array}\right]$
(b) $\left[\begin{array}{cc}\nabla_{x}^{2} f(x)+\beta I & {\left[\frac{\partial c}{\partial x}\right]^{T}} \\ \frac{\partial c}{\partial x} & -\beta I\end{array}\right]\left[\begin{array}{c}\Delta x \\ \Delta \lambda\end{array}\right]=\left[\begin{array}{c}-\nabla_{x} \mathcal{L}(x, \lambda) \\ -c(x)\end{array}\right]$
4. We have the following optimization problem:

$$
\begin{equation*}
\underset{a, b}{\operatorname{minimize}} \quad(a-4)^{2}+(2 b+3)^{2}-3 a+2 b+3 \tag{5}
\end{equation*}
$$

and we want to solve it in a linear system, where $A x=b$ with $x=[a, b]^{T}$. What are A and b ? To solve this problem, put it in a standard quadratic form and solve for when the gradient equals 0 .
(a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], \quad b=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right], \quad b=\left[\begin{array}{c}-7 \\ 4\end{array}\right]$
(c) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 8\end{array}\right], \quad b=\left[\begin{array}{c}-11 \\ 8\end{array}\right]$
(d) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 8\end{array}\right], \quad b=\left[\begin{array}{c}11 \\ -14\end{array}\right]$

