1. Is the matrix $A^{T} A$ positive semi-definite? (hint, for $A^{T} A$ to be positive semi-definite, $x^{T} A^{T} A x \geq 0$ for all x.
(a) yes
(b) no
2. Is the following linear system controllable?

$$
x_{k+1}=\left[\begin{array}{cc}
1 & 3 \tag{1}\\
-2 & 0
\end{array}\right] x_{k}+\left[\begin{array}{l}
0 \\
.1
\end{array}\right] u_{k}
$$

(a) yes
(b) no
3. Below is a finite-horizon LQR problem,

$$
\begin{align*}
\min _{x_{1: N}, u_{1: N-1}} & \sum_{i=1}^{N-1}\left[\frac{1}{2} x_{i}^{T} Q x_{i}+\frac{1}{2} u_{i}^{T} R u_{i}\right]+\frac{1}{2} x_{N}^{T} Q_{f} x_{N} \tag{2}\\
\text { st } & x_{1}=x_{\mathrm{IC}} \tag{3}\\
& x_{i+1}=A x_{i}+B u_{i} \quad \text { for } i=1,2, \ldots, N-1, \tag{4}
\end{align*}
$$

where $Q \succeq 0, R \succ 0$, and $[A, B]$ is controllable. We can solve this problem with either convex optimization that solves for (x, u) directly, or a Ricatti recursion that solves for an optimal policy $u_{i}=-K_{i} x_{i}$. Will these two solutions be equivalent?
(a) yes
(b) no
4. If we modify the finite-horizon $L Q R$ problem to incorporate bound constraints on the controls, we get the following problem:

$$
\begin{align*}
\min _{x_{1: N}, u_{1: N-1}} & \sum_{i=1}^{N-1}\left[\frac{1}{2} x_{i}^{T} Q x_{i}+\frac{1}{2} u_{i}^{T} R u_{i}\right]+\frac{1}{2} x_{N}^{T} Q_{f} x_{N} \tag{5}\\
\text { st } & x_{1}=x_{\mathrm{IC}} \tag{6}\\
& x_{i+1}=A x_{i}+B u_{i} \quad \text { for } i=1,2, \ldots, N-1, \tag{7}\\
& u_{\min } \leq u_{i} \leq u_{\max } \quad \text { for } i=1,2, \ldots, N-1 . \tag{8}
\end{align*}
$$

If we take the Ricatti solution $\left(K_{1: N-1}\right)$ from the original finite-horizon LQR problem, and apply the following policy:

$$
\begin{equation*}
u_{i}=\max \left(u_{\min }, \min \left(-K_{i} x_{i}, u_{\max }\right)\right) \tag{9}
\end{equation*}
$$

Will we recover a solution to the new optimization problem? You should think about the theory as well as implementing it yourself and trying. First figure out what $\max (a, \min (u, b))$ does when $a<b$, making sure to use max.() and min.() if you're doing this in Julia.
(a) yes
(b) no
5. Which of the following cost functions are convex in $x \in \mathbb{R}^{N}$? $(Q \succ 0)$
(a) $c^{T} x$
(b) $-c^{T} x$
(c) $\sum_{i} x_{i}$
(d) $\|x\|_{1}$
(e) $\|x\|_{2}$
(f) $\|x\|_{2}^{2}$
(g) $\|A x-b\|_{1}$
(h) $x^{T} Q x$
(i) $(A x-b)^{T} Q(A x-b)$
6. Which of the following constraints are convex in $x \in \mathbb{R}^{N}$? $(Q \succ 0)$
(a) $A x=b$
(b) $A x \leq b$
(c) $\|x\|_{2} \geq 3$
(d) $\|A x-b\|_{1} \leq 3$
(e) $\|A x-b\|_{2} \leq 3$
(f) $\|A x-b\|_{2}=3$
(g) $\|x\|_{2}^{2} \leq 3$
(h) $x^{T} Q x \leq 3$
(i) $x^{T} Q x=3$
(j) $x^{T} Q x \geq 3$
(k) $x^{T} Q x+q^{T} x \leq 3$

