- 1. For $g(x,y) = \frac{1}{2}x^T P x + q^T x + y^T (Ax b)$, where $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^M$ what is $\nabla_x g(x,y)$?
 - (a) $\nabla_x g(x,y) = q + Ax$
 - (b) $\nabla_x g(x,y) = Px + q + A^T y$
 - (c) $\nabla_x g(x,y) = q + A^T y$
 - (d) $\nabla_x g(x,y) = (P-A)x$
- 2. For $g(x,y) = \frac{1}{2}x^T P x + q^T x + (Ax b)^T y$, where $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^M$ what is $\nabla_x g(x,y)$?
 - (a) $\nabla_x g(x,y) = q + Ax$
 - (b) $\nabla_x g(x,y) = Px + q + A^T y$
 - (c) $\nabla_x g(x,y) = q + A^T y$
 - (d) $\nabla_x g(x,y) = (P-A)x$

3. For $g(x,y) = \frac{1}{2}x^T P x + q^T x + (Ax - b)^T y$, where $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^M$ what is $\nabla_y g(x,y)$?

- (a) $\nabla_y g(x, y) = A^T x$
- (b) $\nabla_y g(x,y) = Ax b$
- 4. For $g(x,y) = \frac{1}{2}x^T P x + q^T x + y^T (Ax b)$, where $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^M$ what is $\nabla_y g(x,y)$?
 - (a) $\nabla_u q(x, y) = A^T x$
 - (b) $\nabla_y g(x,y) = Ax b$
- 5. For $J(x) = (x x_{ref})^T Q(x x_{ref})$, what is $\nabla_x J(x)$?
 - (a) $\nabla_x J(x) = Qx Qx_{ref}$
 - (b) $\nabla_x J(x) = 2Q(x x_{ref})$
 - (c) $\nabla_x J(x) = Q(x x_{ref})$
- 6. Both iLQR and DDP solve the same class of trajectory optimization problem.
 - (a) true
 - (b) false
- 7. DDP is simply the Gauss-Newton version of iLQR (which is full Newton).
 - (a) true
 - (b) false
- 8. With infinite precision, iLQR with a quadratic cost function and nonlinear dynamics would not need regularization during the backwards pass to ensure positive semi-definiteness of the cost-to-go hessian P.
 - (a) true
 - (b) false
- 9. With infinite precision, DDP with a quadratic cost function and nonlinear dynamics would not need regularization during the backwards pass to ensure positive semi-definiteness of the cost-to-go hessian P.
 - (a) true
 - (b) false

10. In iLQR/DDP, you can initialize the solver with a dynamically infeasible initial guess.

- (a) true
- (b) false