1. A matrix exponential can be used to solve all linear time invariant ODE's of the form $\dot{z}=A z$.
(a) true
(b) false
2. A matrix exponential can be used to solve all linear time varying ODE's of the form $\dot{z}=A(t) z$.
(a) true
(b) false
3. You should use a matrix exponential to discretize a nonlinear system after it has been linearized, since differentiating through an explicit integrator is a bad idea.
(a) true
(b) false
4. Quaternions and rotation matrices have all of the same operations: a multiplication operation, an identity, inverse/conjugation.
(a) true
(b) false
5. All quaternion-specific math operations (multiplication, conjugation, etc.) can be computed with standard matrix/vector multiplication after defining the matrix functions $L(q)$ and $R(q)$, as well as the matrices H and T.
(a) true
(b) false
6. $L\left(q_{1}\right) q_{2}=R\left(q_{2}\right) q_{1}$
(a) true
(b) false
7. $L(q)^{T} L(q)=I$
(a) true
(b) false
8. $L\left(q_{1}\right)^{T} q_{2}=T R\left(q_{2}\right) q_{1}$
(a) true
(b) false
9. $L\left(q_{1}\right)^{T} q_{2}=R\left(q_{2}\right) T q_{1}$
(a) true
(b) false
